科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

The Isometric Immersion of Surfaces with Finite Total Curvature

发布时间:2024-03-14 作者: 浏览次数:
Speaker: 韩青教授 DateTime: 2024年3月29日(周五)下午4:30—5:30
Brief Introduction to Speaker:

韩青,美国圣母大学数学系终身教授。美国纽约大学库朗数学研究所博士,美国芝加哥大学博士后,曾在德国莱比锡马普所和美国纽约大学库朗数学研究所进行科研工作。获美国Sloan Research Fellowship. 韩青教授长期致力于非线性偏微分方程和几何分析的研究,在等距嵌入、Monge-Ampere方程、调和函数的零点集和奇异集、退化方程等方面做出了一系列原创性的重要研究成果。

Place: 六号楼二楼报告厅
Abstract:In this talk, we discuss the smooth isometric immersion of a complete simply connected surface with a negative Gauss curvature in the three-dimensional Euclidean space. For a surface with a finite total Gauss curvature and appropriate oscillations of the Gauss curvature, we prove the global existence of a smooth solution to the Gauss-Codazzi system and thus establish a global smooth isometric immersion of the surface into the three-dimensional Euclidean space. Based on a crucial observation that some linear combinations of the Riemann invariants decay faster than others, we reformulate the Gauss-Codazzi system as a symmetric hyperbolic system with a partial damping. Such a damping effect and an energy approach permit us to derive global decay estimates and meanwhile control the non-integrable coefficients of nonlinear terms