科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Global existence and steady states of the density-suppressed motility model with strong Allee effect

发布时间:2024-09-10 作者: 浏览次数:
Speaker: 王智诚 DateTime: 2024年9月12日(周四) 下午14:30-16:30
Brief Introduction to Speaker:

兰州大学数学与统计学院教授,兰州大学“萃英学者”特聘教授,博士生导师。1994年本科毕业于西北师范大学,2007年在兰州大学获理学博士学位。主要成果发表在Arch. Rational Mech. Anal.JMPATrans. AMSSIAM J. Math. Anal.SIAM J. Appl. Math.CVPDEJ. d'Anal. Math.JDEJDDENonlinearityJ. Nonlinear Sci. 等杂志上。2010年入选教育部新世纪优秀人才支持计划,20112019年分别获得甘肃省自然科学二等奖,2016年入选甘肃省飞天学者特聘教授,主持完成多项国家自然科学基金面上项目。目前担任两个SCI杂志International  J.  Bifurc. Chaos Mathematical Biosciences and Engineering (MBE) 的编委(Associate editor)。


Place: 腾讯会议:583-717-670
Abstract:In this talk we consider a density-suppressed motility model with a strong Allee effect under the homogeneous Neumman boundary condition. We first establish the global existence of bounded classical solutions to a parabolic-parabolic system over a $N $-dimensional $\mathbf{(N\le 3)}$ bounded domain $\Omega$, as well as the global existence of bounded classical solutions to a parabolic-elliptic system over the multidimensional bounded domain $\Omega$ with smooth boundary. We then investigate the linear stability at the positive equilibria for the full parabolic case and parabolic-elliptic case respectively, and find the influence of Allee effect on the local stability of the equilibria. By treating the Allee effect as a bifurcation parameter, we focus on the one-dimensional stationary problem and obtain the existence of non-constant positive steady states, which corresponds to small perturbations from the constant equilibrium $(1,1)$. Furthermore, we present some properties through t...