科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

数学物理及偏微分方程国际系列论坛 (3):Lipschitz free boundaries in the monopolist's problem

发布时间:2024-05-28 作者: 浏览次数:
Speaker: Professor Robert McCann, University of Toronto (Canada) DateTime: Beijing time: 10: 30-11: 30, May 29th (Wednesday), 2024 Toronto time: 22: 30-23: 30, May 28th (Tuesday), 2024
Brief Introduction to Speaker:

Robert McCann现为加拿大多伦多大学国家讲座教授加拿大皇家科学院院士,2014年国际数学家大会45分钟报告人。主要从事数学物理、偏微分方程、数理经济等领域的理论研究,特别是在最优输运研究领域做出过具有国际影响力的系列研究成果,Ann. of Math.JAMSInvent. Math.Acta Math.CPAMDuke Math. J.JEMS等国际顶尖数学期刊上发表论文近80篇,现为SIAM J. Math. Anal.J. Differential EquationsPure and Applied Analysis等国际数学期刊编委。


Zoom meeting:

https://us06web.zoom.us/j/4306474095?pwd=neOkgT0fnB41fX5ueNPr7gGvNE2zvE.1&omn=86754488485


Place: Zoom Meeting ID: 430 647 4095, Passcode: 202405
Abstract:The principal-agent problem is an important paradigm in economic theory for studying the value of private information; the nonlinear pricing problem faced by a monopolist is one example; others include optimal taxation and auction design. For multidimensional spaces of consumers (i.e. agents) and products, Rochet and Chone (1998) reformulated this problem to a concave maximization over the set of convex functions, by assuming agent preferences combine bilinearity in the product and agent parameters with a (quasi)linear sensitivity to prices. This optimization corresponds mathematically to a convexity-constrained obstacle problem. The solution is divided into multiple regions, according to the rank of the Hessian of the optimizer. We show the free boundary separating the highest rank regions to be locally Lipschitz. Combining our techniques with those of Rochet and Chone allows us to confirm conjectured aspects of the solution to their square example, and gives the first analytical d...