科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Multi-layer Networks: Sparsity, Heterogeneity and Dependency

发布时间:2024-05-16 作者: 浏览次数:
Speaker: 王军辉 DateTime: 2024年5月18日(周六)上午9:30 - 10:30
Brief Introduction to Speaker:

王军辉教授现为香港中文大学统计系教授。他本科毕业于北京大学,研究生毕业于美国明尼苏达大学并获得统计学博士学位。他的研究方向包括统计机器学习及其在生物医学,经济,金融,和信息技术上的应用。他的研究成果广泛发表于JASA, Biometrika, JMLRNeurIPS等统计及机器学习的顶级期刊和会议,并担任JASAAoAS, Statistica Sinica等主流期刊的副主编。

 

Place: 6号楼二楼报告厅
Abstract: Network data has attracted increasing research interests across various scientific communities. In this talk, I will talk about some of our recent projects on multi-layer networks, including change point detection and interlayer dependency. Particularly, I will introduce a new subspace tracking method to detect network subspace changes so as to assure homogeneous network layers between adjacent change points, and also a new stochastic block Ising model (SBIM) to accommodate intet-layer dependency among the neighboring homogeneous network layers. The developed methods are supported by their asymptotic properties as well as a variety of real applications. If time permits, I will also briefly discuss about the compromise between privacy protection and estimation accuracy in multi-layer networks.