ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
A new approach to an inverse source problem for the wave equation
发布时间:2023-06-14 作者: 浏览次数:
Speaker:
王海兵 教授
DateTime:
2023年6月15日(周四) 16:00–17:30
Brief Introduction to Speaker:
王海兵 东南大学教授
Place:
腾讯会议 ID: 803 137 417
Abstract:
Consider an inverse problem of reconstructing a source term from boundary measurements for the wave equation. We propose a novel approach to recover the unknown source through measuring the wave fields after injecting small particles, enjoying a high contrast, into the medium. For this purpose, we first derive the asymptotic expansion of the wave field, based on the time-domain Lippmann-Schwinger equation. The dominant term in the asymptotic expansion is expressed as an infinite series in terms of the eigenvalues of the Newtonian operator (for the pure Laplacian). Such expansions are useful under a certain scale between the size of the particles and their contrast. Second, we observe that the relevant eigenvalues appearing in the expansion have non-zero averaged eigenfunctions. By introducing a Riesz basis, we reconstruct the wave field, generated before injecting the particles, on the center of the particles. Finally, from these last fields, we reconstruct the source term. A signif...
上一条:
Tensor Categories, Knot algebra, Ribbon tensor categories
下一条:
On the inverse of the Cartan matrix of a p-block