ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
Bifurcations from a degenerate homoclinic orbit
发布时间:2022-06-06 作者: 浏览次数:
Speaker:
朱长荣
DateTime:
2022年6月7日(周二)上午10:00-11:00
Brief Introduction to Speaker:
朱长荣,
重庆大学
教授。
Place:
腾讯会议:274 964 713
Abstract:
Consider an autonomous ordinary differential equation in R^n that has a homoclinic solution asymptotic to a hyperbolic equilibrium. The homoclinic solution is degenerate in the sense that the linear variational equation has d bounded, linearly independent solutions. We study bifurcation of the homoclinic solution under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain general conditions
上一条:
无限维变分贝叶斯推断及其应用
下一条:
特征值间隔的临界点系统与最佳上界估计结果