科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

On the dynamics of the diffusive Field-Noyes model for the Belousov-Zhabotinskii reaction

发布时间:2022-05-03 作者: 浏览次数:
Speaker: 衣凤岐 DateTime: 2022年5月6日(周五)
Brief Introduction to Speaker:

衣凤岐,教授,博士生导师。现任职于大连理工大学数学科学学院,主要从事微分方程与动力系统的研究,特别关注反应扩散系统的分支理论及其应用。2008年获哈尔滨工业大学基础数学专业博士学位。2010年博士学位论文获得全国优秀博士学位论文提名论文;2013年入选教育部新世纪优秀人才支持计划;2014年主持的科研项目获得黑龙江省科学技术奖二等奖。主持国家自然科学基金项目等项目多项,在研国家自然科学基金面上项目一项。

Place: 腾讯会议:499651593
Abstract:In this talk, I will report our recent works on the dynamics of a diffusive Field-Noyes model for the Belousov-Zhabotinskii reaction. We are mainly concerned with the global existence, boundedness and the asymptotic behaviors of the solutions. Of our particular interests, we focus on the existence of attraction region which attracts all the solutions of the system (regardless of the initial values), the global asymptotic stability of the constant positive equilibrium solution, the lumped parameter phenomenon, as well as Turing instability of the spatially homogeneous periodic solutions. In particular, a general formula in terms of the diffusion rates for the general 3 × 3 reaction-diffusion system is derived to determine Turing instability of the Hopf bifurcating periodic solutions, which extends our earlier results on general 2 × 2 reaction-diffusion system. This is a joint work with Mi Wang.