ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
Subdata selection for subgroup analysis
发布时间:2019-11-22 作者: 浏览次数:
Speaker:
Min Yang
DateTime:
2019年11月27日(星期三)上午10:30—11:30
Brief Introduction to Speaker:
Prof.
Min Yang,
University of Illinois at Chicago。
Place:
6号楼二楼报告厅
Abstract:
How to implement data reduction to draw useful information from big data is a hot spot of modern scientific research. One attractive approach is data reduction through subdata selection. Typically, this approach is based on some strong model assumption: data follows one specific statistical model. Big data is complexity and it may not be the best to model the data using one specific model. Instead of assuming one specific model for all population, subgroup analysis assumes there is a hidden group structure and each group has its own model. While subgroup analysis addresses the balance of the model complexity and interpretability efficiently, one disadvantage of this approach is the computation complexity. Even when the sample size is moderate, it will take a considerate computation resource to analyze the data. How to select informative subdata under subgroup analysis? In this talk, a new framework is proposed to address this issue.
上一条:
最优化与生物计算
下一条:
从欧几里得几何到黎曼几何