ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
Boundary operator associated to $\sigma_k$ curvature
发布时间:2019-06-17 作者: 浏览次数:
Speaker:
Yi Wang, Professor
DateTime:
2019年6月28日(周五)下午3:00-4:00
Brief Introduction to Speaker:
Yi Wang, Professor, Johns Hopkins University, USA
Place:
六号楼二楼报告厅
Abstract:
On a Riemannian manifold $(M, g)$, the $\sigma_k$ curvature is the $k$-th elementary symmetric function of the eigenvalues of the Schouten tensor $A_g$. It is known that the prescibing $\sigma_k$ curvature equation on a closed manifold without boundary is variational if k=1, 2 or $g$ is locally conformally flat; indeed, this problem can be studied by means of the energy $\int \sigma_k(A_g) dv_g$. We construct a natural boundary functional which, when added to this energy, yields as its critical points solutions of prescribing $\sigma_k$ curvature equations with general non-vanishing boundary data. Moreover, we prove that the new energy satisfies the Dirichlet principle. If time permits, I will also discuss applications of our methods. This is joint work with Jeffrey Case.
上一条:
Spectral Cantor-Moran measures and a Bourgain Sum of Sine problem
下一条:
On a Simple Estimation of the Proportional Odds Model under Right Truncation