ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
Local Composite partial Likelihood Estimation for Length-Biased and Right-Censored Data
发布时间:2019-06-13 作者: 浏览次数:
Speaker:
徐达
DateTime:
2019年6月17日(周一)下午5:00-5:40
Brief Introduction to Speaker:
Place:
六号楼二楼报告厅
Abstract:
Length-biased data are commonly encountered in applications ranging from economics, engineering and epidemiological cohort studies. Such data are also often subject to right censoring due to loss of follow-up or the end of study. The structure of length-biased data is different from that of traditional survival data and because the assumption of independent censoring is often violated in the presence of biased sampling and the assumed model for the underlying population is no longer satisfied for the observed data. In this paper we consider a proportional hazard model with varying coefficients for right-censored and length-biased data which allow one to examine the interact effect nonlinearly of covariates with an exposure variable. We proposed a local composite likelihood procedure for estimating the unknown coefficient functions in the model. The asymptotic properties of the resulting estimators are established. In addition, an extensive simulation study is conducted and a data se...
上一条:
Prandtl boundary layer theory for MHD equations in Sobolev spaces without monotonicity
下一条:
Regression analysis of informative current status data with the semiparametric linear transformation model