科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Fusion rules for $\mathbb{Z}_{2}$-orbifolds of affine and parafermion vertex operator algebras

发布时间:2019-05-20 作者: 浏览次数:
Speaker: 姜翠波 DateTime: 2019年5月23日(周四)上午10:30-11:30
Brief Introduction to Speaker:

姜翠波上海交通大学

Place: 六号楼四楼会议室
Abstract:This talk is about the orbifold theory of affine and parafermion vertex operator algebras. It is known that the parafermion vertex operator algebra $K(sl_2,k)$ associated to the integrable highest weight modules for the affine Kac-Moody algebra $A_1^{(1)}$ is the building block of the general parafermion vertex operator $K(\mathfrak{g},k)$ for any finite dimensional simple Lie algebra $\mathfrak{g}$ and any positive integer $k$. We first classify the irreducible modules of $\Z_{2}$-orbifold of the simple affine vertex operator algebra of type $A_1^{(1)}$ and determine their fusion rules. Then we study the representations of the $\Z_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$, we give the quantum dimensions, and more technically, fusion rules for the $\mathbb{Z}_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$ are completely determined. This talk is based on joint work with Wang Qing.