科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

A Geometric Approach to the Modified Milnor Problem

发布时间:2019-04-17 作者: 浏览次数:
Speaker: 陈丽娜 DateTime: 2019年4月24号(周三)下午4:00-5:00
Brief Introduction to Speaker:

陈丽娜,华东师范大学博士。

Place: 六号楼二楼报告厅
Abstract:The Milnor Problem (modified) in the theory of group growth asks whether any finite presented group of vanishing algebraic entropy has at most polynomial growth. We show that a positive answer to the Milnor Problem (modified) is equivalent to the Nilpotency Conjecture in Riemannian geometry: given $n, d>0$, there exists a constant $\epsilon(n,d)>0$ such that if a compact Riemannian $n$-manifold $M$ satisfies that Ricci curvature $\op{Ric}_M\ge -(n-1)$, diameter $d\ge \op{diam}(M)$ and volume entropy $h(M)< \epsilon(n,d)$, then the fundamental group $\pi_1(M)$ is virtually nilpotent. We will verify the Nilpotency Conjecture in some cases, and we will verify the vanishing gap phenomena for more cases i.e., if $h(M)<\epsilon(n,d)$, then $h(M)="0$." This is a joint work with Professor Xiaochun Rong and Shicheng Xu.