科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Hamiltonian circles of the prism of infinite cubic graphs

发布时间:2019-03-25 作者: 浏览次数:
Speaker: 李斌龙 DateTime: 2019年3月27日(周三)上午10:00--11:00
Brief Introduction to Speaker:

李斌龙西北工业大学理学院副教授。

Place: 六号楼二楼报告厅
Abstract:A circle of a infinite locally finite graph $G$ is a homeomorphic mapping of the unit circle $S^1$ in $|G|$, the Freudenthal compactification of $G$. A circle of $G$ is Hamiltonian if it meets every vertex (and then every end) of $G$. Paulraja proved that for every 3-connected cubic finite graph $G$, the prism of $G$ (the Cartesian product of $G$ and $K_2$) is Hamiltonian. We extended the result to infinite graphs, showing that if $G$ is an infinite locally finite graph, then its prism has a Hamiltonian circle.