ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach
发布时间:2018-11-26 作者: 浏览次数:
Speaker:
杜增吉 教授
DateTime:
2018年11月29日(周四)上午10:00-11:00
Brief Introduction to Speaker:
杜增吉,江苏师范大学教授。
Place:
六号楼四楼会议室
Abstract:
In this talk, we discuss the Camassa-Holm equation, which is a model for shallow water waves. We first establish the existence of solitary wave solutions for the equation without delay. And then we prove the existence of solitary wave solutions for the equation with a special local delay convolution kernel and a special nonlocal delay convolution kernel by using the method of dynamical system, especially the geometric singular perturbation theory and invariant manifold theory. According to the relationship between solitary wave and homoclinic orbit, the Camassa-Holm equation is transformed into the ordinary differential equations with fast variables by using the variable substitution. It is proved that the equation with disturbance also possesses homoclinic orbit, and there exists solitary wave solution of the delayed Camassa-Holm equation.
上一条:
Coercivity of fractional derivatives and application in an inverse source problem for fractional diffusion equation(I)
下一条:
One-phase bifurcation for the p-Laplacian