科学研究
数苑经纬讲坛
当前位置: 学院主页 > 科学研究 > 数苑经纬讲坛 > 正文

数苑经纬讲坛(64):Murnaghan-Nakayama rule for Macdonald functions

发布时间:2025-12-24 作者: 浏览次数:

报告人: 景乃桓 (北卡州立大学)

报告时间:2025年12月27日(周六)、28日(周日) 上午9:00-12:00

报告地点:国交二号楼201会议室

报告摘要: The classical Murnaghan-Nakayama rule for the symmetric group is an effective method to compute Schur functions and irreducible characters. We first review two q- Murnaghan-Nakayama rules for Hecke algebra and Hecke-Clifford algebra using vertex algebraic approach. We will then discuss our multi-parameter M-N rule for Macdonald polynomials, which contains the two q-M-N rules as special cases. The general MN rule has several applications: an inversion of the Pieri rule of Hall-Littlewood functions and (q,t)- Kostka polynomials as well as a general procedure to compute Macdonald polynomials. This talk is joint work with Ning Liu.