科学研究
学术报告
当前位置: 学院主页 > 科学研究 > 学术报告 > 正文

Cauchy problem for the Navier-Stokes equations with temperature-dependent transport coefficients and large data

发布时间:2026-01-16 作者: 浏览次数:
Speaker: 董文超 DateTime: 2026年1月20日(周二)上午9:30--10:30
Brief Introduction to Speaker:

董文超,广西大学。

Place: 国交2号楼315会议室
Abstract:In this talk, we will investigate the Cauchy problem for the one-dimensional compressible Navier-Stokes equations with temperature-dependent transport coefficients and large initial data. Specifically, we will focus on the case where the viscosity coefficient is characterized by $\mu=\theta^a$ and the heat conductivity coefficient is given by $\kappa=\theta^b$, with $a$ and $b$ being non-negative. Our main result will establish the existence and asymptotic stability of a global strong solution provided that the initial data belongs to the $H^2\times H^1\times H^1$-space and $a$ is sufficiently small.