ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
Large-Scale Covariate Assisted Two-Sample Inference under Dependence
发布时间:2019-11-01 作者: 浏览次数:
Speaker:
朱文圣
DateTime:
2019-11-1 下午3:00
Brief Introduction to Speaker:
朱文圣,
东北师范大学
,教授。
Place:
六号楼2楼报告厅
Abstract:
The problems of large-scale two-sample inference often arise from the statistical analysis of “high throughput” data. The conventional multiple testing procedures for large-scale two-sample inference usually suffer from substantial loss of testing efficiency when conducting numerous two-sample t-tests directly. To some extent, this is due to the ignorance of sparsity information in large-scale two-sample inference. Moreover, in practice, the two-sample tests commonly have local correlations and neglecting the dependence structure in the two-sample tests may decrease the statistical accuracy in multiple testing. Therefore it is imperative to develop a multiple testing procedure which can not only take into account the sparsity information but also accommodate the dependence structure among the tests. To address the aforementioned important issues, we first introduce a novel dependence model to allow for sparsity information and to characterize the dependence structure among the tes...
上一条:
Dynamics of a periodic stoichiometric model
下一条:
Discussions on Some Significant Open Problems in Experimental Designs