ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
A non-Stefan free boundary problem
发布时间:2021-12-10 作者: 浏览次数:
Speaker:
王皓
DateTime:
2021年12月16日(周四)上午10:00-11:00
Brief Introduction to Speaker:
王皓教授,
the University of Alberta
Place:
腾讯会议:150332323
Abstract:
I will present a novel free boundary problem to model the movement of single species with a range boundary. The change of a free boundary is assumed to be influenced by the weighted total population inside the range boundary, which is described by an integro-differential equation. Our free boundary equation is a generalization of the classical Stefan condition that allows for nonlocal influences on the boundary movement. We prove that the new model is well posed and possesses steady state. The spreading speed of the model is smaller than that for the equivalent problem with a Stefan condition. While the classical Stefan condition categorizes asymptotic behavior via a spreading-vanishing dichotomy, the new model extends this dichotomy to a spreading-balancing-vanishing trichotomy. Our model allows both expansion and shrinking of the range boundary. When the model is extended to have two free boundaries, we observe asymmetric shifts, as well as steady state within synchronous moving b...
上一条:
Recent regularity theory of optimal transport and applications
下一条:
Complex dynamics of a tumor-immune system with antigenicity