ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
Statistical Properties of 2D stochastic Navier-Stokes Equations with time-periodic forcing and degenerate stochastic forcing
发布时间:2021-12-10 作者: 浏览次数:
Speaker:
吕克宁
DateTime:
2021年12月15日(周三)上午10:00-11:00
Brief Introduction to Speaker:
吕克宁,杨伯翰大学教授。
Place:
腾讯会议:333325354
Abstract:
We consider the incompressible 2D Navier-Stokes equations with periodic boundary conditions driven by a deterministic time periodic forcing and a degenerate stochastic forcing. We show that the system possesses a unique ergodic periodic invariant measure which is exponentially mixing under a Wasserstein metric. We also prove the weak law of large numbers for the continuous time inhomogeneous solution process. In addition, we obtain the weak law of large numbers and central limit theorem by restricting the inhomogeneous solution process to periodic times. The results are independent of the strength of the noise and hold true for any value of viscosity with a lower bound $\nu_1$ characterized by the Grashof number $G_1$ associated with the deterministic forcing. In the laminar case, there is a larger lower bound $\nu_2$ of the viscosity characterized by the Grashof number $G_2$ associated with both the deterministic and random forcing. We prove that in this laminar case, the system ha...
上一条:
Complex dynamics of a tumor-immune system with antigenicity
下一条:
Predictive Mathematical Models of Hormone Treatment for Prostate Cancer