科学研究
报告信息
当前位置: 学院主页 > 科学研究 > 报告信息 > 正文

从三阶辫子群到丛理论,Calabi-Yau范畴和模空间

发布时间:2021-01-19 作者: 浏览次数:
Speaker: 邱宇 教授 DateTime: 2021年1月23日上午10:00-11:00
Brief Introduction to Speaker:

邱宇简介:

清华大学丘成桐数学科学中心教授,主要从事代数表示论领域及其与几何/拓扑方向的关系等研究,其主要研究成果发表在Invent. Math.Compos. Math.Proc. Lond. Math. Soc.Adv. Math.等国际期刊。2016年,邱宇教授以在卡拉比-丘范畴上稳定条件和辫子群作用方面的研究,获得代数表示论国际会议奖”(International Conferences on Representations of AlgebrasICRA Award 2016)。该奖旨在表彰35岁以下,并在有限维代数表示理论上有杰出表现的年轻数学家。


Place: 腾讯会议
Abstract:报告摘要:我们首先给出三阶辫子群Br3=/(aba=bab)=/(x^2=y^3)的各种具体实现:带饰圆盘的映射类群,A2丛交换类群的基本群,三叶结的扭结群,以及椭圆曲线模空间的基本群。然后我们介绍这些实现背后的前沿理论,包括丛理论,Calabi-Yau范畴上的稳定条件和二次微分的模空间。