ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
An efficient alternating direction method of multipliers for optimal control problems constrained by random Helmholtz equations
发布时间:2018-04-13 作者: 浏览次数:
Speaker:
张凯
DateTime:
2018年4月17日(周二)上午10:30-11:30
Brief Introduction to Speaker:
张凯,吉林大学教授。
Place:
六号楼二楼报告厅
Abstract:
Based on the alternating direction method of multipliers (ADMM), we develop three numerical algorithms incrementally for solving the optimal control problems constrained by random Helmholtz equations. First, we apply the standard Monte Carlo technique and finite element method for the random and spatial discretization, respectively, and then ADMM is used to solve the resulting system. Next, combining the multi-modes expansion, Monte Carlo technique, finite element method, and ADMM, we propose the second algorithm. In the third algorithm, we preprocess certain quantities before the ADMM iteration, so that nearly no random variable is in the inner iteration. This algorithm is the most efficient one and is easy to implement. The error estimates of these three algorithms are established. The numerical experiments verify the efficiency of our algorithms.
上一条:
From homoclinic solution to homoclinic manifolds
下一条:
常微分方程解的存在区间和周期解问题