ENGLISH
|
学校主页
学院主页
学院概况
学院简介
现任领导
组织机构
联系方式
师资队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
研究生培养
研究生培养动态
研究生专业方向
研究生培养方案
党建园地
党建动态
数院党校
学生工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
校友动态
校友动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
学院主页
>
科学研究
>
学术报告
> 正文
High dimensional semiparametric estimate of latent covariance matrix for matrix-variate
发布时间:2018-03-16 作者: 浏览次数:
Speaker:
赵俊龙
DateTime:
2018年3月17日(周六)上午8:30–9:30
Brief Introduction to Speaker:
赵俊龙
,北京师范大学
副教授
Place:
六号楼二楼报告厅
Abstract:
Estimation of the covariance matrix of high dimensional matrix-variate is an important issue. Many methods have been developed, based on sample covariance matrix under the Gaussian or sub-Gaussian assumption. However, sub-Gaussian assumption is restrictive and the estimate based on the sample covariance matrix is not robust. In this paper, we consider the estimate of covariance matrix for high dimensional matrix-variate in the frame of transelliptical distribution and the Kendall's $\tau$ correlation. Since the covariance matrix of matrix-variate is commonly assumed to own some low dimension structure, we consider the structure of Kronecker expansion in this paper. The asymptotic results of the estimator are established. Simulation results and real data analysis confirm the effectiveness of our method.
上一条:
A Naive Least Squares Method for Spatial Autoregression with Covariates
下一条:
On the weakly nonlinear Kelvin-Helmholtz instability of current-vortex sheets