师资队伍
副教授
当前位置: 学院主页 > 师资队伍 > 副教授 > 正文

王燕

发布时间:2018-09-17 作者: 浏览次数:

 王燕

(Full CV  CV_YanWANG20181109.pdf)


教育背景:

2011.8 - 2016.4   博士学位   新加坡国立大学 数学系

2007.8 - 2011.7   学士学位   北京师范大学 数学科学学院


工作经历:

2018.9 - 至今    副教授    华中师范大学 数学与统计学学院

2017.9 - 2018.9  访问学者   新加坡国立大学 数学系

2016.8 - 2018.9   博士后   北京计算科学研究中心

2016.2 - 2016.8  研究助理   新加坡国立大学 数学系


研究领域:

  • 固态薄膜材料的去湿问题

  • 高振荡偏微分方程的数值算法与分析

  • 偏微分方程数值解


学术论文:

a) Published and accepted

 [1]. Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies (with Wei Jiang, Weizhu Bao and David J. Srolovitz), Physical Review B, 91 (2015), article 045303.

 [2]. Solid-state dewetting and island morphologies in strongly anisotropic materials (with Wei Jiang, Weizhu Bao, Quan Zhao and David J. Srolovitz), Scripta Materialia, 115 (2016), 123-127.

 [3]. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies (with Weizhu Bao, Wei Jiang and Quan Zhao), Journal of Computational Physics, Vol. 330, pp. 380-400, 2017.

 [4]. Stable equilibria of anisotropic particles on substrates: a generalized Winterbottom construction (with Weizhu Bao, Wei Jiang and David J. Srolovitz), SIAM Journal on Applied Mathematics, Vol. 77, pp. 2093–2118, 2017.

 [5]. Symmetric high order Gautschi-type exponential wave integrators pseudospectral method for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime (with Xiaofei Zhao), International Journal of Numerical Analysis and Modeling, Vol. 15, pp. 405–427, 2018.

 [6]. A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime (with Yongyong Cai), ESAIM Mathematical Modelling and Numerical Analysis, Vol. 52, pp. 543–566, 2018.

 [7]. Solid-state dewetting on curved substrates (with Weizhu Bao, Wei Jiang and David J.Srolovitz), Physical Review Materials, article 113401, 2018.


b) Preprint:

 [8]. (Semi-) Nonrelativistic limit of the nonlinear Dirac equations (with Yongyong Cai).

 [9]. Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime (with Yongyong Cai).


  • 附件【CV_YanWANG20181109.pdf】已下载
  • 附件【CV_YanWANG.pdf】已下载

上一篇:科研与人才培养

下一篇:龙旸靖