师资队伍

覃红

学士学位:1988年于华中师范大学数学系获得
硕士学位:1991年于华中师范大学数学系获得
博士学位:2002年于香港浸会大学数学系获得
2000年6月至今:先后任华中师范大学数学与统计学学院副教授、教授
2002年10至2002年11月:于美国加州大学伯克利分校统计系作访问学者
2003年10至2004年4月:于美国乔治华盛顿大学统计系作博士后研究
讲授课程

现代试验设计理论和方法(研究生)

研究领域和兴趣

1.试验设计(均匀设计、部分因析设计等等)

2.组合设计

3.多元分析        

4.统计判决理论

5.生物统计

科研项目

A、主持科研项目

[1] 2000-2001年主持湖北省自然科学基金项目“矩阵参数估计的统计判决问题的研究”(项目批准号99J168

[2] 2000-2001年主持湖北省重点科技攻关项目“统计估计理论研究与相应软件系统开发”(项目批准号992P0118

[3] 20034-5月主持国家自然科学基金国际合作项目“Hadamard矩阵与试验   设计的关系” (项目批准号10310101042

[4] 2003-2005年主持湖北省自然科学基金项目“因子试验设计中的投影均匀性研究”(项目批准号2003ABA022)

[5] 2004年主持教育部“留学回国人员科研启动基金”项目“均匀性模式的研究”(教外司留[2004]176号)

[6] 20051-12月主持国家自然科学基金项目“均匀性模式及其在因子试验设计中的应用” (项目批准号10441001

[7] 2005-2007年主持教育部科学技术重点项目均匀性在因子设计中的应用研究”(项目编号105119

[8] 2007-2009年主持国家自然科学基金项目“均匀设计有关理论和应用研究”(项目批准号10671080

[9] 2007-2009年主持教育部新世纪优秀人才支持计划(计划编号NCET-06-672

[10] 2009-2011年主持高等学校博士学科点专项科研基金课题“投影均匀性的理论及其应用研究”(课题编号20090144110002

[11] 2013-2016年主持国家自然科学基金项目“广义离散偏差在试验设计中的应用研究” (项目批准号11271147

[12] 2013-2014年主持全国科学技术名词审定委员会委托项目“科学技术名词社会认知度问卷调查”(项目号:MCW-2013

[13] 2011-2013年主持教育部人文社会科学研究专项任务项目(高校思想政治工作二类)“加强大学生党员理想信念教育研究”(项目批准号:11JDSZ2028

[14] 2015-2017年主持教育部人文社会科学研究专项任务项目(高校思想政治工作一类)“高校校园安全防控体系建设研究”(项目批准号:15JDSZ1004

B、参与科研项目  

[1] 2001-2003年参与国家自然科学基金项目“Hadamard矩阵构造中的若干问题”(项目编号10071029

[2] 2005-2007年参与国家自然科学基金项目“下丘从背景噪声中提取声信号的拟合研究”(项目编号30470564

[3] 2005-2006年参与国家十五科技攻关项目“室内生物测定及生物安全突发控制措施研究”(项目编号2004BA809B0604

[4] 2006年参与国务院第一次全国经济普查研究项目“房地产投资的规模、结构和效益分析”(项目编号JP63

[5] 2015-2019年参与国家自然科学基金“ 复杂区间删失数据的统计推断及其应用”(项目批准号11471135)

[6] 2015-2019年参加国家自然科学基金“试验设计中的模型选择(项目批准号11471136)

奖励情况

[1] 2002年获香港浸会大学“Ace Style International Limited奖”

[2] 2003年获湖北省自然科学奖三等奖

[3] 2004年获湖北省教学研究成果奖三等奖

[4] 2006年入选“湖北省新世纪高层次人才工程”第二层次人选

[5] 2006年教育部“新世纪优秀人才支持计划”基金获得者

[6] 2007年获湖北省优秀硕士学位论文指导教师

[7] 2008年获湖北省优秀硕士学位论文指导教师

[8] 2010年获湖北省优秀硕士学位论文指导教师

[9] 2011年获湖北省优秀博士学位论文指导教师

[10] 2012年获湖北省优秀博士学位论文指导教师

[11] 2013年获第七届湖北省高等学校教学成果奖二等奖

[12] 2013年获国家统计局第十一届全国统计科研优秀成果奖(博士论文奖)二等奖

著作和教材

[1] 李照海、覃红、张洪.遗传学中的统计方法.科学出版社.2006

发表论文

[119]Mohamed Salem, Haroon Barakat, Qin Hong andTing Yan. (2016).Limit theory of bivariate dual generalized order statistics with random index.Statistics

[118]Na Zou and Hong Qin. (2015).Some properties of double designs in terms of Leediscrepancy.Acta Matematica Scientia

[117]A. M. Elsawah, Jianwei Hu and Hong Qin. (2016). Effective lower bounds of wrap-around discrepancy on three-level combined design.Journal of Systems Science and Complexity

[116]Tingxun Gou, Hong Qinand Kashinath Chatterjee. (2015).A New Extension Strategy on Three-Level Factorials Under Wrap-around $L_2$-discrepancy.Communications in Statistics – Theory and Methods    

[115] Ou, Zujun, Qin, Hong. (2017) .Optimalfoldoverplans ofasymmetricfactorials withminimumwrap-around $L_2$-discrepancy.Statistical Papers

[114]李文龙;晏挺;M. A. Abd Elgawad;覃红(2016).Degree-based moment estimation for ordered networks.Journal of Systems Science and Complexity

[113]Jing Luo,Hong Qin,Ting, Yan, Lala Zeyneb. (2016).A note on asymptotic distributions in directed exponential random graph models with bi-degree sequences.Communi. Statist. Theory Methods. In press.  

[112]A. M. Elsawah and Hong Qin. (2016). An effictive construction method for the optimality addition of runs to optimal three-level designs.J. Korean Statist. Soc.

[111]Ou, Zujun, Qin, Hong. (2016).Analytic connections between adouble designand its original design in terms of different optimlity criteria.Communications in Statistics – Theory and Methods    

[110]A. M. Elsawah and Hong Qin. (2016).Asymmetric uniform  designs  based on mixture discrepancy.Journal of AppliedStatistics.DOI:10.1080/02664763.2016.1140727    

[109] Jing Luo, Hong Qin. (2015).A Note on Ranking in the Plackett-Luce Model for Multiple Comparisons.Acta Mathematicae Applicatae Sinica

[108]Elsawah, A. M. and Qin, H.(2015). A new look on optimal foldover plans in termsof uniformity criteria. Communi. Statist. Theory Methods. In press. ID: 1024862 DOI:10.1080/03610926.2015.1024862  

[107]KashinathChatterjee, Zujun Ou, Frederick K. H. Phoa and Hong Qin(2017).Uniform Four-Level  Designs From Two-level  Designs: A New Look.Statistica Sinica,27:171-186.    

[106]Hong Qin,Nabakumar Jana,Somesh Kumarand Kashinath Chatterjee(2017).Stress-strength Models with More than Two States underExponential Distribution.Communications in Statistics-Theory and Methods. 46(1):120-132.ID: 988257 DOI:10.1080/03610926.2014.988257  

[105] Balakrishnan, N., Qin, H. and Chatterjee, K. (2011).Multivariate Bayesian U-type asymmetric Designs for Nonparametic Response Surface Prediction under Correlated Errors.Communications in Statistics,

[104] Zhang Shangli, Qin Hong and Wu Changchun. (2015).Admissibility of linear estimators with respect to inequality constraintsunder some loss functions. Acta Mathematicae Applicatae Sinica    

[103] Zhenghong Wang and Hong Qin(2014).New lower bounds to wrap-around L2-discrepancyfor U-type designs with three-level.Acta Mathematicae Applicatae Sinica    

[102]Zujun Ou, Hong Qin and Kashinath Chatterjee.(2017). Some new lower bounds to various discrepancies on combined designs.Communications in Statistics - Theory and Methods, 46(7):3244-3254, DOI: 10.1080/03610926.2015.1060339.

[101]Song Shuo, Zhang Qionghui, Zouna and Qin Hong. (2016).  New lower bounds for Lee discrepancy on two and three mixed levels factorials.Acta Mathematica Scientia, 36B(6):1832-1840.    

[100] Zhang Yong, Siyu Chen, Hong Qin and Ting Yan. (2016).Directed weighted random graphs with an increasingbi-degree sequence. Statist. Prob. Letters. 119:235-240.    

[99]M A Alawady, A M Elsawah, Jianwei Hu, Hong Qin. (2016).Asymptotic behavior of non-identical multivariate mixture.ProbStat Forum, 9:95-104

[98] Hongyi Li,KashinathChatterjee , Bo Li and Hong Qin. (2016).Construction of Sudoku-Based Uniform Designs with Mixed Levels. Statist. Prob. Letters. 114:111-118.    

[97]Elsawah, A. M. and Qin, H.(2016). An efficient methodology for constructing optimal foldover designs in terms of mixture discrepancy.  J. Korean Statist. Soc., 2016, 45: 77-88 [http://dx.doi.org/10.1016/j.jkss.2015.07.004]

[96]Elsawah, A. M., Al-awady, M. A., Abd- Elgawad, M. A. and Qin, H.(2016). A note on optimal foldover four-level factorials.  Acta Mathematica Sinica.32(2):286-296.

[95] Qin, H., Wang Z.H.  and Chatterjee, K. (2016).Uniformity pattern for mixed level factorials and Lee discrepancy.J Syst Sci Complex,29: 499510.

[94]Yan, T., Wang H. S. and Qin, H. (2016).Asymptotics in Undirected Random Graph Models Parameterized by the Strengths of Vertices.Statistica Sinica, 26(1):273-294.

[93]邹娜,覃红(2016).最小低阶Lee矩混杂准则及其应用.中国科学, 46(1):97-110.

[92] Yan, T., Li, Z.H., Li, Y.Z. and Qin, H. (2016).Likelihood ratio tests in the Rasch model for item response data when the number of persons and items goes to infinity.Statistics and Its Interface, 9:223-232.

[91] Qin, H., Gou, T.X. and Chatterjee, K. (2016).A new class of two-level optimal extended designs.Journal of the Korean Statistical Society, 45:168-175.

[90] Balakrishnan, N., Qin, H. and Chatterjee, K. (2016).Generalized Projection Discrepancy and ItsApplications in Experimental Designs. Metrika, 79:19-35. DOI :10.1007/s00184-015-0541-0.    

[89] Ou, Zujun, Qin, HongXu Cai (2015).Optimal foldover plans of three-level designs withminimum wrap-around L2-discrepancy.Science in China, 58(7): 1537–1548

[88]汪政红;覃红(2015).离散偏差~$D(\P;\gamma)$~及其在试验设计中的应用.应用数学学报, 38(5):944-955.

[87]Li Qizhai, Qin Hong, Li Zhaohai and Zheng Gang. (2015).Statistical Methods for Design and Analysis of LinkageStudies. Advanced Medical Statistics (2nd Edition), Edited by Y. Lu, J. Fang, L. Tian and H. Jin, 889-913.    

[86]覃红,汪政红(2015).均匀性模式及其在试验设计中的应用.华中师范大学学报(自然科学版). 49(5):647-656.

[85]Elsawah, A.M., Qin, H., (2015). Mixture discrepancy on symmetric balanceddesigns.Statistics and Probability Letters, 104:123-132.    

[84]DengWenwu,  Li Gaoxiang and Qin Hong. (2015).Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system.PHYSICAL REVIEW A91, 043831-11.    

[83]A. M. Elsawah andQin,H.  (2015).A new strategy for optimal foldover two-level designs. Statist. Prob. Letters, 103:116-126. OI:10.1016/j.spl.2015.04.020  

[82] Qin Hong and Wang Zhenghong (2015).Application of minimum projectionuniformity criterion in complementarydesigns forq-level factorials.Front. Math. China, 10(2): 339–350.    

[81]A. M. Elsawah and Hong Qin (2015).Lower Bound of Centered $L_2$-discrepancy for Mixed Two and ThreeLevels $U$-type Designs. J. Stat. Plann. Infer.,  161: 1-11.    

[80]A. M. Elsawah and Hong Qin (2015).Lee discrepancy on symmetric three-level combined designs. Statist. Prob. Letters,96:273-280    

[79]  Zhang Qionghui, Wang Zhenghong, Hu Jianwei and Qin Hong. (2015).A New Lower Bound for Wrap-around $L_2$-discrepancy on Two and Three Mixed Levels Factorials. Statist. Prob. Letters, 96:133-140.

[78]Hong Qin,Kashinath Chatterjee andSutapa Ghosh. (2015).Extended mixed-level supersaturated designs. J. Stat. Plann. Infer., 157-158: 100-107.  

[77]Yan, T., Zhao, Y.p. and Qin, H. (2015).Asymptotic normality in the maximum entropy models on graphs with an increasing number of parameters.Journal of Multivariate Analysis, 61-76.    

[76] Ou, Zujun, Qin, Hong and Hongyi Li. (2015).Some Lower Bounds of Centered $L_2$-discrepancy of $2^{s-k}$ Designs and Their Complementary Designs.Statistical Papers, 56:969-979.

[75] ]雷轶菊,覃红2015.三水平部分因析设计的中心化$L_{2}$偏差均值的几个结果.应用数学学报, 38(3): 496-506.

[74]A. M. Elsawah and Hong Qin (2014).New Lower Bound for Centered $L_{2}$-discrepancy of Four-level $U$-type Designs. Statistics Probability Letters, 93:65-71

[73] Ou, Zujun, Qin, HongXu Cai (2014).A Lower Bound for the Wrap-around $L_2$-discrepancy on Combined Designs of Mixed Two- and Three-level Factorials.Communications in Statistics-Theory and Methods, 43:2274-2285.

[72] Lei, Y. J. and Qin, H. (2014). Uniformity in double design.Acta Mathematicae Applicatae Sinica30(3):773-780

[71] Fang, Kaitai, Li, Gang, Lu Xuyang and Qin, Hong. (2013).An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data. Computational and Mathematical Methods in Medicine, 92B15:1-9.

[70] Qin, H., Chatterjee, K.  and Zujun Ou. (2013). A Lower Bound for the Centered $L_2$-discrepancy on Combined Designs Under the Asymmetric Factorials. Statistics,47(5):992-1002.  doi:10.1080/ 02331888.2011.652966.

[69] Ou, Zujun, Qin, HongXu Cai (2013).Partially Replicated Two-Level Fractional Factorial Designs via Semifoldover. J. Stat. Plann. Infer., 143:809-817.

[68]雷轶菊,覃红. (2013).正规$s^{n-p}$部分因子设计最优区组和折叠反转方案.华中师范大学学报, 47(3):297-301.

[67]张尚立,刘刚,覃红2012带约束多元线性模型随机回归系数和参数的线性估计的泛容许性.数学物理学报, 32A(3):468-474.

[66]Hong Qin, Angshuman Sarkar and Kashinath Chatterjee. (2012).Designs for searching two two-factor and one three-factorinteraction effect under the tree structure.Calcutta Statistical Association Bulletin,64:255-256    

[65] Chatterjee, K., Li, Z. and Qin, H. (2012).A new lower bound to centered and wrap-round$L_2$-discrepancies. Statistics Probability Letters, 82:1367-1373.    

[64]张裕,覃红(2012).一阶模型下~$Q$~$Q_B$准则的几个结果.系统科学与数学, 32(3):334-343.

[63] Qin, H., Wang, Z. H and Chatterjee, K. (2012).Uniformity pattern and related criteria for $q$-level factorials. J. Stat. Plann. Infer.,  142:1170-1177.

[62] Chatterjee, K. , Qin, H. and Na Zou (2012).Lee discrepancy ontwo and threemixed level factorials.Science in China, 55(3):663-670.

[61] Ou, Z. J., Qin, H. and Li, H. Y. (2012).Connections among Different Criteria for Optimal Factor Assignments.Communications in Statistics,41(2):241-250.

[60]Lei, Y. J., OuZ. J. , QinH. and Zou, N. (2012).A Note on Lower Bound of Centered $L_2$-discrepancy on Combined Designs.Acta Mathematica Sinica, 28(4):793-800.

[59]雷轶菊,欧祖军,覃红.  (2011).(s^r)×s^n正规部分因子设计折叠反转的性质.《数学物理学报》,31(4A): 978-982

[58] Qin, H., Zou, N. and Zhang, S. L. (2011). Design efficiency for minimum projection uniform designs with two-level.Journal of Systems and Complicity,  24(4):761-768.

[57]雷轶菊,覃红. (2011.).  $(s^r)\times s^n$部分因子设计的估计能力.系统科学与数学, 31(4): 475-481

[56] Yue, X., Qin, H. and Chatterjee, K. (2011).Optimal U-type Design for Bayesian  Nonparametric Multiresponse Prediction.J. Stat. Plann. Infer.,141(7):2472-2479.

[55] Ou, Zujun, Qin, Hong and Li, Yuhong. (2011) . Optimal blocking and foldover plans for nonregular two-level designs. J. Stat. Plann. Infer.141(5):1635-1645.    

[54] Zu-Jun Ou, Kashianth Chatterjee and Qin, H. (2011).Lower bounds of  various discrepancies on combined designs. Metrika,  74:109–119.

[53]  Zhang, S. L., Fang, Z., Qin, H. and Han, L. (2011). Charaterization of admissible linear estimators in the growth curve model with the respct to inequality constraints.Journal of the Korean Statistical Society,40:173-179.

[52] Chatterjee, K. and Qin, H. (2011). Generalized discrete discrepancy and its application.J. Stat. Plann. Infer, 141(2):951-960.

[51]雷轶菊,覃红,邹娜. (2010).折叠反转设计的中心化L2偏差值的一些下界.数学物理学报, 30(6):1555-1561

[50]刘寅,覃红. (2010).基于均匀设计Goldstein-Price函数模拟研究.华中师范大学学报, 44(6):535-540

[49]雷轶菊,覃红. (2010). Double设计在对称化L2 偏差下的均匀性.《华中师范大学学报(自然科学 版)》,(3):369-372.

[48]张尚立,覃红. (2010).多元协方差阵扰动模型岭估计的影响分析.《数学杂志》, 30(1):157-162.

[47]张尚立,覃红. (2010).Admissibility in the general growth curve model with respect to restricted parameter sets under matrix loss function. ActaMath Sci, 30(1):27-38.

[46] Song, S. and Qin, H.  (2010). Application of minimum projection uniformity in complementary designs. ActaMath Sci., 30(1):180-186..

[45] Zu-Jun Ou and Qin, H. (2010). Some Applications of Indicator Function in Two-level Factorial Designs. Statistics Probability Letters, 8019-25.

[44] Tian, G.L., Fang, H.B., Tan, M., Qin, H. and Tang, M. L. (2009). Uniform distributions in a class of conex polyhedrons with applications to drug combination studies. Journal of Multivariate Analysis, 100:1854-1865.

[43] Qin, H. and Chatterjee, K. (2009).Minimum projection uniformity in asymmetric fractionalfactorials.Communications in Statistics,38:1383-1392.

[42] Qin, H., Zou, N.  and Chatterjee, K. (2009). Connection between uniformity and minimum moment aberration. Metrika ,70:79-88.

[41]Na Zou, Ping Ren and Hong Qin. (2009).A note on Lee Discrepancy. Statist. Prob. Letters, 79(4):496-500.

[40]张裕,鲁倩,覃红. (2008). QQ_B准则在double设计中的应用.应用数学,20(s1)43-47.

[39]刘晓华,覃红. (2008). $\theta$准则下的最优double设计.应用数学学报, 31(6)987-992.

[38] Chatterjee, K. and Qin, H. (2008).A new look on discrete discrepancy. Statist. Prob. Letters,78(17):2988-2991.

[37]张尚立,覃红. (2008).约束条件下增长曲线模型中回归系数线性估计的泛容许性.数学物理学报28A(3): 523--529

[36]Qin, H. and Ai, M. Y. (2007). A note on connection between uniformity and generalized minimum aberration.Statistical Paper 48, 491-502.

[35] Wang, Z. H.,Qin, H. andChatterjee, K.  (2007).  Lower bounds for thesymmetric $L_2$-discrepancy and theirapplication.Communications in Statistics 36(13),  2413-2423.

[34]Qin, H.,  Zhang H. and Li, Z.H. (2007). The impact ofpopulation stratification onpopulation-basedQTL association analysis.Random Walk, Sequential Analysis and Related topicsA Festschrift in Honor of Yuan-Shih Chow,  311-333.

[33] Zhang, S.L. andQin, H. (2006).Minimumprojection uniformity criterion and its application.Statist. Probab. Lett.  76(6): 634-640..

[32]Chatterjee, K., Fang, K.T. andQin, H.(2006). A lower bound for centered L2 discrepancy on asymmetric factorials and its application.Metrika 63:243-255.

[31]张尚立,覃红 (2006).约束条件下线性模型协方差阵扰动的影响分析.数学物理学报26A(4):621-628.

[30] Qin, H.,Zhang, S.L. and Fang, K.T. (2006).Constructing uniform design with two- or three-level.ActaMath Sci.26B(3):451-459.

[29]Qin, H. and Li, D.(2006). Connection between uniformity and orthogonality for symmetrical factorial designs.J. Stat. Plann. Infer 136(8):2770-2782.

[28]覃红(2005).混水平均匀设计的构造.应用数学学报  28(4):704-712.

[27] Liu, M.Q,Qin, H.and Xie, M.Y. (2005). Discrete discrepancy and its application in experimental designs.Contemporary Multivariate Analysis and Experimental DesignsIn Celebration of Professor Kai Tai Fangs 65th Birthday. 73-88.

[26]Qin, H.,Ai, M.Y. and Ning, J.H.(2005). Connection among some optimal criteria for ranking fractional factorial designs.Acta  Math. Sci.  21(4):545-552.

[25]Fang, K.T. andQin, H. (2005). Uniform pattern and related criteria fortwo-level factorials.Science in China Ser A. 48(1):1-11.

[24] Xia, M.Y., Chen, Y.B. andQin, H.(2005). Someresults for the existence of

regular complex Hadamard matrices.Utilitas Mathematics  68:103-108.    

[23] Chatterjee, K., Fang, K.T. andQin, H.(2005). Uniformity in factorial designs

with mixed levels.   J. Statist. Plann. Infer. 128:593-607.    

[22]方开泰,覃红2004.二水平因子设计的均匀性模式及其相关的准则.中国科学A34(4): 418-428.

[21]Qin, H.  and Chen, Y.B.(2004). Some results on generalized minimum aberration for symmetricalfractional factorialdesigns.Statist. Probab. Lett. 66: 51-57.

[20]Qin, H. and Fang, K.T. (2004). Discrete discrepancy in factorial designs.Metrika  60:59-72.

[19]  Fang, K.T., Ge, G.N., Liu, M.Q. andQin, H.(2004).Combinatorial constructions for optimal supersaturated designs. Discrete Mathematics 279(1-3): 191-202.

[18]  Fang, K.T., Ge, G.N., Liu, M.Q. andQin,H. (2004). Construction of uniform

designs via super-simpleresolvable t-designs.Utilitas Mathematics66: 15-32.    

[17]彭俊好,吴茗,覃红2004).矩阵损失下等式约束线性模型的可容许性,广州大学学报(自然科学版),3卷, 第296-298页。    

[16] Fang, K.T., Lin, D.K.J. andQin, H. (2003).  A note on optimal foldover design.  

Statist. Probab. Lett.62:245-250.    

[15]Qin, H. (2003). Characterization of generalized aberration of some designs in terms of theircomplementary designs. J. Statist. Plann. Infer. 117: 141-151.  

[14] Fang, K.T. andQin, H. (2003). A note onconstruction of nearly uniform

designs with large number of runs.Statist.  Probab. Lett.  61:215-224.    

[13] Fang, K.T., Ge, G.N., Liu, M.Q. andQin,H. (2003). Construction of minimumgeneralized aberrationdesigns. Metrika  57:37-50.

[12]覃红,吴茗,彭俊好(2002).多元线性模型带约束参数集的线性估计泛可    

容许性,数学物理学报(A辑),第22卷,第427-432页。  

[11]彭俊好,覃红,吴茗 (2001).共同均值矩阵参数线性估计的容许性,生物

数学学报,第16卷,第367-373页。

[10]覃红,吴茗(2000.多元线性模型中回归系数的线性估计的容许性,华中师范大学学报(自然科学 版),第 34卷,第135-138页。    

[9]彭俊好,覃红,吴茗 (1998).共同均值矩阵参数所有A-E-容许的线性估计,华中师范大学学报(自然科学 版),第 32卷,第400-404页。

[8]覃红,夏明远(1997).投影矩阵的构造,华中师范大学学报(自然科学

版),第 31卷,第1-4页。

[7]陈清平,覃红,檀大耀(1996.带线性约束的多元回归模型中回归系数的线性估计的泛容许性,数学物理学报(A辑),第16卷(增刊),第99-103页。  

[6]覃红,陈清平1996.共同均值矩阵参数的所有A-可容许性线性估计,       华中师范大学学报(自然科学 版),第 30卷,第261-266页。

[5]覃红 (1995).多元线性模型中随机回归系数和参数的线性估计的泛容许性,

应用数学学报,第18卷,第434-438页。

[4]覃红 (1994).一般增长曲线模型回归系数线性估计的泛容许性,数学物理学    

报,第14卷,第472-478页。

[3]覃红 (1994).增长曲线模型回归系数线性估计的泛容许性,应用概论统计,

9卷,第120-129页。

[2]覃红 (1994).多元回归系数线性估计容许性的一些结果,数理统计与应用概

率,第10卷,第28-38页。

[1]  艾明要,覃红(1992).多元线性模型中随机回归系数和参数线性估计的可

容许性,华中师范大学学报(自然科学版),第26卷,第279-285页。


 

Tel: 02767867139
Fax: 02767868011
E-mail:qinhong@mail.ccnu.edu.cn
          (最后更新日期:2017-02-28)
网站简介 | 在线投稿 | 领导信箱 | 友情链接
版权所有 © 2010 华中师范大学数学与统计学学院